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Advanced Photon Source
Storage Ring Design Characteristics

• Energy: 7.0 GeV
• Stored Beam Current (design): 100 mA
• Stored Beam Lifetime (design): >10 hrs
• Circumference:  1104 m
• Number of Super-periods: 40
• Harmonic Number: 1296
• RF Frequency: 351.93 MHz
• Horizontal Tune: 35.2
• Vertical Tune: 14.3
• Synchrotron Tune: 0.0072
• Horiz. Beam Size at  ID Source: 325 µm rms
• Vertical Beam Size at  ID Source: 86 µm rms

• X-Y Coupling 10 %
• Straight Sections for I.D.’s: 35
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Orbit Feedback System Requirements

APS Orbit Stability Specifications

• Beam must be stable to within 5% of its size.
• Horizontal stability specification: 17µm rms.
• Vertical stability specification: 4.4µm rms.

Orbit Feedback System Functionality

• ‘Global’ (long wavelength) feedback to minimize
rms orbit errors.

• ‘Local’ feedback to steer the orbit through x-ray
source points.
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Implementation

• The system is entirely digital, using DSPs to
perform the real-time computations.

• A reflective memory network allows globally-
oriented algorithms to be implemented at high
rates (1-2kHz).

• Local and global feedback are combined in a
single system.

• The global orbit feedback system has been in
operation with users since June 1997.
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 Orbit Motion Power Spectra at ID Source Points
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Betatron Orbit Motion

• Orbit disturbances produce an orbit error which
follows a closed sinusoidal path relative to the
reference orbit.

• This is true both for static disturbances and for
dynamic disturbances.

• In the APS, the horizontal betatron tune is 35.2,
and the vertical betatron tune is currently 19.3.

Horizontal

Vertical
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The Global Orbit Correction Algorithm

• The global orbit correction algorithm solves a set
of linear equations describing the betatron orbit
motion:

R c x⋅ =∆ ∆

• The ‘inverse response matrix’ maps orbit errors at
the bpms to changes in corrector strength:

− ⋅ =1R x c∆ ∆

• Removal of ‘singular values’ improves the stability
of poorly conditioned inverse response matrices.

• Different bpm & corrector selections will change
the outcome.

Ex. Many bpms and few correctors…

• Least squares minimization of bpm errors.

Ex. Few bpms and many correctors…

• Exact correction at bpm locations.
• Least-squares minimization of corrector power.
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The Orbit Feedback Process
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Orbit Feedback at APS

‘DC’ Orbit Correction [Emery, PAC 1997]

• A workstation-based system corrects the ‘DC’ orbit
at 10-second intervals.

• It corrects the global rms orbit using > 300 bpms
and 80 correctors.

• No singular values are removed when calculating
the inverse response matrix.

• ‘Despiking’ eliminates bpm outliers before
calculation of the corrector deltas.

• Bpm offset compensation to reduce beam-current
dependences.

• Local steering is implemented on-demand, using a
different configuration of bpms and correctors.
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Orbit Feedback at APS (cont’d)

Dynamic Orbit Correction

• The real-time system corrects only dynamic orbit
errors  at a 1kHz rate (soon to be 2kHz).

• A high-pass filter rolls off the frequency reponse
below 20mHz.

• It also corrects the global rms orbit, using 160
bpms and 38 correctors.

• Again, no singular values are removed when
calculating the inverse response matrix.

• ‘Despiking’ is not implemented.
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 Real-Time Feedback Hardware Scheme
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Slave Station Hardware
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Slave Station Hardware

• The 68040 processor runs EPICS core routines.
• Real-time processing is performed using Texas

Instruments TMS320 C30 & C40 floating-point
DSPs.

• One C30 DSP has performed global orbit
corrections at 1kHz. Adding a C40 DSP has
allowed the sampling rate to increase to 2kHz.

• The Reflective Memory network provides station-
to-station data transfers at 29.6Mbytes/second.

• X-ray bpms on each beamline and narrow-
bandwidth rf bpms at each ID source point will be
used for ‘local’ feedback.
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Implementation of the Real-Time Global
Orbit Feedback Algorithm

• Computation of corrector ‘errors’ is conveniently
separated into a series of vector dot-products, one
for each corrector.

B
P

M
 e

rr
or

s

row 38

row 37

row 2

row 1 corrector 1

corrector 2

corrector 37

corrector 38

inverse response matrix

=

corrector ’errors’

38 x 160 160 x 1 38 x 1

• Each corrector ‘error’ becomes the input to one of
the 38 independent feedback regulators.
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The Role of Reflective Memory

bpm error vector (Reflective Memory)

Slave
Station

#1

Slave
Station

#20

bpms bpms

4 x 1 4 x 1

• Bpms directly available to each slave station are
written into reflective memory.

bpm error vector (Reflective Memory)

Slave
Station

#1

Slave
Station

#20

Corrector
Setpoints

Corrector
Setpoints

160 x 1 160 x 1

One row of Inverse
Response Matrix

• Entire bpm vector is read from reflective memory
and used to calculate new corrector setpoints.

‘Write’ Phase

‘Read’ Phase
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Synchronization and Data Sharing
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Synchronization

Synchronization

• After computing & writing bpm error values to
reflective memory, each DSP sets an assigned
word in a ‘data ready’ vector in reflective memory.

• All DSPs “spin-wait” on the ready-vector becoming
all ones, before proceeding to read the entire bpm
error vector.

• A maximum wait-time prevents complete
breakdown if one slave crate fails to write its
ready-vector.

• Each slave writes to a heartbeat word in reflective
memory that is checked by the master crate.
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Timing the DSP Code

DAC

Controls
Processor

Elapsed
Time

Code
Loop

Hardware
Timer

DSP

1

0

DRAM

• For timing across multiple DSPs, we use a DAC
output module. Each DSP writes values to a
different channel.

• The DSP’s on-board timer chips are used to time
sections of code on individual DSPs.
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Operator Interface
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Operational Issues

• Orbit feedback control loops can be opened and
closed with no impact on stored beam.

• New response matrices can be downloaded to re-
configure the system in a few seconds.

• The system turns itself off when beam is lost, and
can turn itself back on when beam returns.

• It is not necessary to open the feedback loops
during injection.

• In 9 months only one user beam store has been
lost due to real-time orbit feedback.

• Since hand-over to operations, the system has
been available for > 99% of user beam time.
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Orbit Stability at Insertion-Device Source Points

Horizontal Vertical

No F/B  F/B on No F/B F/B on

Required orbit stability  (rms)  
(with 10% x-y coupling)

17.5µm 4.5µm

Orbit motion 0.016Hz-30Hz (rms)  18.4µm 4.4µm 3.1µm 1.8µm

Orbit motion 0.25Hz-500Hz (rms)  20µm 13.2µm 7.4µm 7.5µm

Beam size at I.D. source points
(rms) (inferred from S35BM @ 100mA)

335µm 18µm

Beta at I.D. source points (design) 17m 3m

Measurements were taken during the APS “98-2” user run with 1% x-y
coupling.
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 Orbit Motion Power Spectra at ID Source Points
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Cumulative RMS Orbit Motion at ID Source Points
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Effect of Regulator Tuning
on Closed-Loop Response

• As the regulator gain is increased, the rise-time is
reduced, but the overshoot increases.

Closed-Loop Step Response

Low integral gain

High integral gain
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Impact of Regulator Tuning on RMS Orbit Stability

Low integral gain

High integral gain

Low integral gain

High integral gain
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Eddy-Current Effects in Corrector
Magnet Responses

• There are 8 dual-function corrector magnets in
each sector of the storage ring.

• All but one of the magnets are subject to eddy-
current effects from the aluminum vacuum
chamber that significantly slow the dynamic
response.

• The one ‘fast’ corrector in each sector is used in
the global feedback algorithm since it offers the
best correction bandwidth.

• The ‘slow’ correctors will be used to implement
local feedback.

0.5”
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Corrector Step Responses

• Corrector ‘system’ step responses have been
measured from the transient response of the
global orbit.

• Significant differences exist between the
responses of the horizontal and vertical ‘slow’
correctors.

• Subtle differences also exist between different
slow correctors because of small differences in the
mechanical layout of the vacuum chamber.

‘Slow’ horizontal correctors

‘Slow’ vertical corrector

‘Fast’ corrector
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Step Response Equalization
• Least-squares filter design problem

Σ

Mean-
Squared Error

I.I.R. Filter
Measured Step

Response

’Desired’ Step
Response

• ‘Desired’ response was chosen to be a simple low-
pass filter with a one-sample delay.

• Resonable results were obtained with a 3-pole, 3-
zero IIR filter.

Original ‘slow’ corrector

Equalized responses

Original ‘fast’ corrector
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Local Feedback Measurement Issues

• Local feedback requires very stable information
about the trajectory of the x-ray beam or of the
particle beam through the x-ray source points.

• So far, our position inputs have not been
sufficiently stable to support local feedback.

• There are well-known problems with insertion-
device photon bpms due to contamination from
other x-ray sources.

• We are installing new rf bpm electronics to help
improve measurement stability at the insertion-
device source points.
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Local Feedback: Classic Four-Corrector
‘Local Bump’

• Bump ‘coefficients’ map positions at two bpms to
the four corrector strengths.

• Coefficients are computed to ensure that the
global orbit is not affected when the bump strength
is changed.

• Simple to implement – only requires two bpms.
• Bump coefficients must be well matched to

prevent leakage.
• Eddy-current effects make it very difficult for us to

get a closed dynamic bump (even with corrector
equalization).

• BUT, the same four correctors can be used with
bpms outside the bump to help cancel closure
errors.

C C C CP P

X-ray
beam
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Local Feedback Algorithm
Implementation

• A response matrix will be used to implement local
feedback at all source-points simultaneously.

• Two options will be evaluated to enable local &
global feedback systems to work together.

Frequency-domain separation

• Use local feedback for slower corrections, with
global feedback used above a few hertz.

• Does not compromise the overall correction
bandwidth.

Combined-Function Response Matrix

• Include both local and global objectives in the
same ‘global’ matrix.

• Correction bandwidth will be compromised
because the ‘fast’ correctors must be slowed down
to match the equalized ‘slow’ correctors.
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Real-Time Beam Diagnostics

 ‘DSPscope’

• Simultaneous collection of 40 channels of time-
domain data from bpms, correctors, or regulator
error signals.

• Data is provided as EPICS waveforms records.

‘AC Voltmeter’

• Simultaneous sliding Fourier transforms of 40
selectable data channels.

• Simultaneous sliding Fourier transforms of all 320
BPM channels in either plane.

Corrector Error Statistics

• Sliding estimates of the mean and variance of the
corrector errors are computed at each sample tick.

• Used to detect problems with the orbit feedback
system itself and to detect BPM problems.

Corrector Error History Buffer

• Maintain a circular buffer of the past 128mS of
corrector errors.

• Used to detect and locate sources of unwanted
beam motion e.g., following a beam dump.
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Waveform Capture using ‘DSPscope’
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Sliding Fourier Transform               
(‘AC Voltmeter’)

360Hz Fourier Component of 320 bpms

• All 320 bpm channels are simultaneously Fourier
analyzed at a chosen frequency.

• One channel is used as a phase reference.
• Used with ‘AC-lockin’ measurements.
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Result from AC-Voltmeter BPM Gain Test

Suspect bpm channels

No response
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Searching for Sources of Orbit Motion

• The location of a source of orbit motion cannot be
determined directly from the bpm signals.

• The corrector ‘error’ signal generated during the
orbit correction process can be used to locate
sources.

• All 38 corrector error signals are collected
simultaneously at 1kHz.

• Power spectra from the corrector errors provide a
roadmap of sources in frequency and space.
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Corrector Error Signatures for Different
Source Locations

• Ten quadrupoles in sector 6 were excited with AC
drive signal (converted to vertical dipole field by
asymmetry in vacuum chamber).

• Three distinct corrector error signatures were
identified from the ten source locations.

• These same signatures allow real sources of
motion to be located to within about one third of a
sector (about 9 meters)



ADVANCED PHOTON SOURCE

J.A Carwardine
Beam Instrumentation Workshop, May 1998

 Roadmap of Horizontal Sources
(September 1997)

(1) Low frequency random noise from sextupole
power supply with poor regulation.

(2) Narrow-band source at 248Hz from oscillating
corrector power supply.

(3) Broadband noise caused by bad bpm in sector 6
(not real orbit motion).

Storage-Ring Sector

Frequency (Hz)

Corrector Error Power-Spectrum
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Roadmaps of Orbit Motion (March 1998)

Horizontal

Vertical

Sector
Frequency (Hz)

Sector
Frequency (Hz)
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Improving the Global Algorithm

Correction Bandwidth

• Correction bandwidth could be improved if the
sampling rate were increased.

• But, the sampling rate can only be increased
above 2kHz by reducing the number of bpms in
the global algorithm (or with faster hardware).

• We can increase the correction bandwidth with no
penalty using a higher-order regulator.

Attenuation

• The maximum vertical attenuation would increase
from about 15dB to about 25dB by using two
correctors per sector instead of one.

• But, correction bandwidth would be reduced
because the ‘fast’ correctors must be slowed down
to match the equalized ‘slow’ correctors.

Corrector Issues

• It is estimated that quantization errors on 38
correctors produce about 1µm rms of broadband
motion.

• A program is underway to increase the resolution
beyond the present 16 bits.
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Closing Remarks

• Real-time global orbit feedback brings the
broadband horizontal orbit stability well within
specification.

• Vertical stability below 30Hz is also within
specification.

• We have the tools to localize strong sources of
orbit motion.

• Local feedback algorithms will be evaluated later
this year.

• Long-term goals include reducing vertical rms
motion below one micron.


